Network Community Detection: A Review and Visual Survey

نویسندگان

  • Bisma S. Khan
  • Muaz A. Niazi
چکیده

Community structure is an important area of research. It has received a considerable attention from the scientific community. Despite its importance, one of the key problems in locating information about community detection is the diverse spread of related articles across various disciplines. To the best of our knowledge, there is no current comprehensive review of recent literature which uses a scientometric analysis using complex networks analysis covering all relevant articles from the Web of Science (WoS). Here we present a visual survey of key literature using CiteSpace. The idea is to identify emerging trends besides using network techniques to examine the evolution of the domain. Towards that end, we identify the most influential, central, as well as active nodes using scientometric analyses. We examine authors, key articles, cited references, core subject categories, key journals, institutions, as well as countries. The exploration of the scientometric literature of the domain reveals that Yong Wang is a pivot node with the highest centrality. Additionally, we have observed that Mark Newman is the most highly cited author in the network. We have also identified that the journal, "Reviews of Modern Physics" has the strongest citation burst. In terms of cited documents, an article by Andrea Lancichinetti has the highest centrality score. We have also discovered that the origin of the key publications in this domain is from the United States. Whereas Scotland has the strongest and longest citation burst. Additionally, we have found that the categories of "Computer Science" and "Engineering" lead other categories based on frequency and centrality respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overlapping Community Detection in Social Networks Based on Stochastic Simulation

Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...

متن کامل

Utilizes the Community Detection for Increase Trust using Multiplex Networks

Today, e-commerce has occupied a large volume of economic exchanges. It is known as one of the most effective business practices. Predicted trust which means trusting an anonymous user is important in online communities. In this paper, the trust was predicted by combining two methods of multiplex network and community detection. In modeling the network in terms of a multiplex network, the relat...

متن کامل

Quad-pixel edge detection using neural network

One of the most fundamental features of digital image and the basic steps in image processing, analysis, pattern recognition and computer vision is the edge of an image where the preciseness and reliability of its results will affect directly on the comprehension machine system made objective world. Several edge detectors have been developed in the past decades, although no single edge detector...

متن کامل

A Review of Intrusion Detection Defense Solutions Based on Software Defined Network

Most networks without fixed infrastructure are based on cloud computing face various challenges. In recent years, different methods have been used to distribute software defined network to address these challenges. This technology, while having many capabilities, faces some vulnerabilities in the face of some common threats and destructive factors such as distributed Denial of Service. A review...

متن کامل

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1708.00977  شماره 

صفحات  -

تاریخ انتشار 2017